Abstract

Scaffolds capable of promoting cell migration from the periphery towards the center along the radial direction hold promises for tissue regeneration. Here we report a simple and general method based on masked electrospray for the fabrication of such scaffolds by depositing collagen nanoparticles on radially-aligned nanofibers in a radial density gradient. Placed between the metallic needle and the collector, an aperture with tunable opening sizes serves as the mask. By increasing the size of the opening at a fixed speed, the electrosprayed particles take a radial density gradient that decreases from the center to the periphery. When deposited on a glass slide, the radial density gradient of collagen nanoparticles promotes the migration of fibroblasts from the periphery towards the center. By replacing the glass slide with a scaffold comprised of radially-aligned nanofibers, a synergetic effect arises to further accelerate cell migration along the radial direction. The synergistic effect can be attributed to a unique combination of the topographic cue arising from the aligned nanofibers and the haptotactic cue enabled by the graded nanoparticles. This work demonstrates a method to maximize cell migration from the periphery towards the center through a combination of topographic and haptotactic cues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call