Abstract

With the rapid development of large-scale clean energy, lithium-sulfur (Li-S) batteries are considered to be one of the most promising energy storage devices. In this manuscript, the polymetallic hetero-nanocrystal of iron nickel@cobalt nitride encapsulating into boron carbonitride nanotubes (Fe0.64Ni0.36@Co5.47N@BCN) was designed and optimized for use as a modified material for commercial polypropylene (PP) separators. The prepared Fe0.64Ni0.36@Co5.47N@BCN-12 hybrid material presents strong chemisorption and catalytic conversion capabilities, which endows the Fe0.64Ni0.36@Co5.47N@BCN-12//PP separator with enhanced polysulfide shuttling inhibition. The assembled Li-S cells with Fe0.64Ni0.36@Co5.47N@BCN-12//PP separators have minimized charge transfer resistance and faster redox kinetics. Additionally, cells with Fe0.64Ni0.36@Co5.47N@BCN-12//PP separator provide high reversible capacity of 674 mAh/g for 400 cycles at 0.5C and excellent cyclability for 1000 cycles at 2C with a low decay rate of 0.05 % per cycle. Therefore, this study provides a feasible functionalization route for improving the electrochemical performance of Li-S batteries through separator modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.