Abstract

The application of blockchain to Vehicular Edge Computing (VEC) has attracted significant interests. As the Internet of Things plays an essential and fundamental role for data collecting, data analyzing, and data management in VEC, it is vital to guarantee the security of the data. However, the resource-constraint nature of edge node makes it challenging to meet the needs to maintain long life-cycle IoT data since vast volumes of IoT data quickly increase. In this paper, we propose Acce-chain, a storage-elastic blockchain based on different storage capacities at the edge. Acce-chain supports re-write operation to re-write the historical block with a newly generated block without breaking the hash links between the blocks. As a result, Acce-chain ensures that the hot data can be efficiently accessed at the edge without incurring much communication costs or increasing the total size of the chain. To guarantee the security of the re-write process, we propose a new cryptographic primitive named Dynamic Threshold Trapdoor Chameleon Hash (DTTCH). To guarantee the verifiability of query operation, we design a novel storage structure named <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">HybridStore</i> to ensure the verifiable query for on-chain/off-chain IoT data. As a result, Acce-chain achieves both authorized re-write and verifiable query simultaneously. We provide security analysis for the DTTCH scheme and the IoT data query algorithms. We evaluate Acce-chain through experiments and the results show that the performance of the re-write operation is feasible in real-world VEC settings, and the query efficiency can achieve up to several magnitudes better than which of the baseline. The results also demonstrate that Acce-chain can provide high service quality for the latency-sensitive VEC systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.