Abstract

Determining asteroid properties provides valuable physical insights but inverting them from photometric lightcurves remains computationally intensive. This paper presents a new approach that combines a simplified Cellinoid shape model with the Parallel Differential Evolution (PDE) algorithm to accelerate inversion. The PDE algorithm is more efficient than the Differential Evolution algorithm, achieving an extraordinary speedup of 37.983 with 64 workers on multicore CPUs. The PDE algorithm accurately derives period and pole values from simulated data. The analysis of real asteroid lightcurves validates the method’s reliability: in comparison with results published elsewhere, the PDE algorithm accurately recovers the rotational periods and, given adequate viewing geometries, closely matches the pole orientations. The PDE approach converges to solutions within 20,000 iterations and under one hour, demonstrating its potential for large-scale data analysis. This work provides a promising new tool for unveiling asteroid physical properties by overcoming key computational bottlenecks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.