Abstract

Transmitter and dispersion eye closure quaternary (TDECQ) penalty has replaced eye mask and transmitter dispersion penalty (TDP) methodologies for qualifying PAM-4 transmitters. TDECQ correlates better than the eye mask test with BER, and its implementation of receiver equalizers abstracts the metric from receiver features, enabling robust and systematic component assessments. However, assessing TDECQ is computationally intensive and time-consuming. Here, we present the use of machine learning (ML) to dramatically accelerate TDECQ assessments of PAM-4 transmitter signals. Explored techniques include convolutional neural networks and long short-term memory. We demonstrate that these methods provide comparable assessment accuracies compared to the conventional method, while tremendously reducing computational time. Some ML methods were ~4500 times faster than the conventional method. Described architectures are generic and can be modified to accelerate any class of optical component assessments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.