Abstract

Marine terraces that bevel the western flank of the Point Reyes Peninsula were used to measure crustal uplift rates west of the San Andreas Fault segment north of San Francisco. Field measurements of platform inner edges, and luminescence ages from overlying marine sediments, suggest the youngest platform was cut by waves during the ~ 80-ka sea-level high stand (MIS 5a). Since 80 ka, the platform has been uplifted slowly throughout most of the peninsula, but more rapidly in the southern part, where uplift reaches a rate of ~ 1 m/ka. Analyses of the spatial distributions of hillslope gradient and elevation are consistent with the terrace data. Correlations of older terrace levels to high-stand ages suggest that crustal uplift has accelerated in the southern part of the peninsula during the past ~ 300 ky, probably as a result of a contractional zone that has been migrating northward. This study is the first to quantify the rate and style of crustal uplift west of this San Andreas Fault segment. Although the transform motions in this region are well documented, the complex nature of interacting fault strands are only beginning to be understood. These results imply that other faults, with reverse-motions, are also active and potentially contributing to earthquake hazards.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.