Abstract
AbstractRecent advances in random walk particle tracking have enabled direct simulation of mixing and reactions by allowing the particles to interact with each other using a multipoint mass transfer scheme. The mass transfer scheme allows separation of mixing and spreading processes, among other advantages, but it is computationally expensive because its speed depends on the number of interacting particle pairs. This note explores methods for relieving the computational bottleneck caused by the mass transfer step, and we use these algorithms to develop a new parallel, interacting particle model. The new model is a combination of a sparse search algorithm and a novel domain decomposition scheme, both of which offer significant speedup relative to the reference case—even when they are executed serially. We combine the strengths of these methods to create a parallel particle scheme that is highly accurate and efficient with run times that scale as 1/P for a fixed number of particles, where P is the number of computational cores (equivalently, subdomains, in this work) being used. The new parallel model is a significant advance because it enables efficient simulation of large particle ensembles that are needed for environmental simulations and also because it can naturally pair with parallel geochemical solvers to create a practical Lagrangian tool for simulating mixing and reactions in complex chemical systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.