Abstract
Direct electrolytic N2 reduction to ammonia (NH3) is a renewable alternative to the Haber–Bosch process. The activity and selectivity of electrocatalysts are evaluated by measuring the amount of NH3 in the electrolyte. Quantitative 1H nuclear magnetic resonance (qNMR) detection reduces the bench time to analyze samples of NH3 (present in the assay as NH4+) compared to conventional spectrophotometric methods. However, many groups do not have access to an NMR spectrometer with sufficiently high sensitivity. We report that by adding 1 mM paramagnetic Gd3+ ions to the NMR sample, the required analysis time can be reduced by an order of magnitude such that fast NH4+ detection becomes accessible with a standard NMR spectrometer. Accurate, internally calibrated quantification is possible over a wide pH range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.