Abstract
Molecular main-group hydride catalysts are attractive as cheap and Earth-abundant alternatives to transition-metal analogues. In the case of the latter, specific steric and electronic tuning of the metal center through ligand choice has enabled the iterative and rational development of superior catalysts. Analogously, a deeper understanding of electronic structure-activity relationships for molecular main-group hydrides should facilitate the development of superior main-group hydride catalysts. Herein, we report a modular Sn-Ni bimetallic system in which we systematically vary the ancillary ligand on Ni, which, in turn, tunes the Sn center. This tuning is probed using Sn L1 XAS as a measure of electron density at the Sn center. We demonstrate that increased electron density at Sn centers accelerates the rate of σ-bond metathesis, and we employ this understanding to develop a highly active Sn-based catalyst for the hydroboration of CO2 using pinacolborane. Additionally, we demonstrate that engineering London dispersion interactions within the secondary coordination sphere of Sn allows for further rate acceleration. These results show that the electronics of main-group catalysts can be controlled without the competing effects of geometry perturbations and that this manifests in substantial reactivity differences.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.