Abstract

HFE, a major histocompatibility complex class I-related protein, is implicated in the iron overload disease, hereditary hemochromatosis. Whereas patients with hereditary hemochromatosis have low serum transferrin levels, little is known about transferrin turnover in HFE deficiency states. We injected mice intravenously with radioiodinated transferrin and compared plasma transferrin decay and steady-state endogenous transferrin concentration in the plasma between HFE-deficient and wild-type C57BL/6 mouse strains. HFE-deficient mice degraded transferrin faster than normal (P < 0.001) and had lower plasma transferrin concentrations (P < 0.001). Both HFE-deficient and wild-type mice were then fed diets with 3 different iron concentrations that we designated deficient (2-5 mg/kg of iron), control (0.2 g/kg), and overload (20 g/kg) for 6 wk immediately after weaning to create a range of serum iron concentrations and resultant transferrin saturations ranging from 16 to 78%. We found an inverse correlation between transferrin saturation and transferrin half-life (P < 0.0001, r = -0.839) for both HFE-deficient and wild-type mice, which suggests that HFE does not have a direct effect on transferrin catabolism; rather, HFE may influence transferrin half-life indirectly through its effect on transferrin saturation, which in turn enhances transferrin decay in HFE-deficient mice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.