Abstract

The catalytic performances of magnetic NixFe3−xO4 catalysts in persulfate (PS) activation for tetracycline (TC) degradation are first investigated. In this study, NixFe3−xO4 catalysts with variable compositions (x = 0.2, 0.6 and 1.0) were synthesized. The physical and chemical characteristics of NixFe3−xO4 catalysts were investigated systematically. NixFe3−xO4 catalysts have sheet-like morphology and spinel type structure. In NixFe3−xO4/PS system, sulfate radical (SO4−) and hydroxyl radicals (HO) produced by PS activation degraded TC efficiently. In the comparation of different NixFe3−xO4 catalysts, Ni0.6Fe2.4O4 presented superior catalytic activity performance. The optimum degradation rate in 86% was obtained at Ni0.6Fe2.4O4 = 350 mg/L, PS = 42.0 µM and pH = 7 after 35 min reaction. The main radicals (SO4− and HO) were identified by scavengers and the electron spin resonance (ESR) experiment. Meanwhile, possible activation and degradation mechanism were analyzed thoroughly. The high catalytic efficiency and short degradation period of Ni0.6Fe2.4O4 catalyst indicate that it has great potential in TC wastewater disposal and environmental protection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.