Abstract

Tin disulfide (SnS2) has emerged as a promising two-dimensional (2D) material due to its excellent electrical and optical properties. However, research into 2D SnS2 has mainly focused on its synthesis procedures and applications; its stability to humidity and temperature has yet to be studied. In this work, 2D SnS2 thin films were grown by atomic layer deposition (ALD) and characterized by various tools, such as x-ray diffraction, Raman analysis, and transmission electron spectroscopy. Characterization reveals that ALD-grown SnS2 thin films are a high-quality 2D material. After characterization, a four-inch-wafer-scale uniformity test was performed by Raman analysis. Owing to the quality, large-area growth enabled by the ALD process, 98.72% uniformity was obtained. Finally, we calculated the thermodynamic equations for possible reactions between SnS2 and H2O to theoretically presurmise the oxidation of SnS2 during accelerated humidity and temperature testing. After the accelerated humidity and temperature test, x-ray diffraction, Raman analysis, and Auger electron spectroscopy were performed to check whether SnS2 was oxidized or not. Our data revealed that 2D SnS2 thin films were stable at humid conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call