Abstract
Oxidative stress and inflammation play vital roles in Parkinson’s disease (PD) development. Thus, telomere length is expected to be shortened in this disease, but current data are inconclusive. We performed a case-control study of 261 patients with PD and 270 sex and age-matched healthy controls treated at the Peking Union Medical College Hospital. We found leucocyte telomere length (LTL) was significantly shortened in PD as compared with controls [1.02 (0.84-1.39) vs. 1.48 (1.08-1.94), P<0.001] and shorter LTL was associated with a dramatically increased risk of PD (lowest vs. highest quartile odds ratio (OR) =9.54, 95% CI: 5.33-17.06, P<0.001). We also investigated the roles of six LRRK2 variants in the susceptibility to PD. R1441C/G/H, G2019S, and I2020T variations were not detected in our study. No significant differences were found in the presence of variants R1398H (15.4% vs. 17.0%, P=0.619) and R1628P (2.3% vs. 0.7%, P=0.159) in PD and controls, while the G2385R variant was found to be a risk factor associated with increased PD susceptibility (OR=2.14, 95% CI: 1.12-4.10, P=0.021). No significant association was found between different LRRK2 variants and telomere length. These findings suggest that shorter LTL might be associated with PD in a manner independent of LRRK2 variants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.