Abstract
Quantitative T2 measurements are sensitive to intra- and extracellular water accumulation and myelin loss. Therefore, quantitative T2 promises to be a good biomarker of disease. However, T2 measurements require long acquisition times. To accelerate T2 quantification and subsequent generation of synthetic T2 -weighted (T2 -w) image contrast for clinical research and routine. To that end, a recently developed model-based approach for rapid T2 and M0 quantification (MARTINI) based on undersampling k-space, was extended by parallel imaging (GRAPPA) to enable high-resolution T2 mapping with access to T2 -w images in less than 2 minutes acquisition time for the entire brain. Prospective cross-sectional study. Fourteen healthy subjects and a multipurpose phantom. Carr-Purcell-Meiboom-Gill sequence at a 3T scanner. The accuracy and reproducibility of the accelerated T2 quantification was assessed. Validations comprised MRI studies on a phantom as well as the brain, knee, prostate, and liver from healthy volunteers. Synthetic T2 -w images were generated from computed T2 and M0 maps and compared to conventional fast spin-echo (SE) images. Root mean square distance (RMSD) to the reference method and region of interest analysis. The combination of MARTINI and GRAPPA (GRAPPATINI) lead to a 10-fold accelerated T2 mapping protocol with 1:44 minutes acquisition time and full brain coverage. The RMSD of GRAPPATINI increases less (4.3%) than a 10-fold MARTINI reconstruction (37.6%) in comparison to the reference. Reproducibility tests showed low standard deviation (SD) of T2 values in regions of interest between scan and rescan (<0.4 msec) and across subjects (<4 msec). GRAPPATINI provides highly reproducible and fast whole-brain T2 maps and arbitrary synthetic T2 -w images in clinically compatible acquisition times of less than 2 minutes. These abilities are expected to support more widespread clinical applications of quantitative T2 mapping. 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2018;48:359-368.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.