Abstract

In our quest for the design, the analysis and the implementation of a subdivision algorithm for finding the complex roots of univariate polynomials given by oracles for their evaluation, we present sub-algorithms allowing substantial acceleration of subdivision for complex roots clustering for such polynomials. We rely on approximation of the power sums of the roots in a fixed complex disc by Cauchy sums, each computed in a small number of evaluations of an input polynomial and its derivative, that is, in a polylogarithmic number in the degree. We describe root exclusion, root counting, root radius approximation and a procedure for contracting a disc towards the cluster of root it contains, called $$\varepsilon $$ -compression. To demonstrate the efficiency of our algorithms, we combine them in a prototype root clustering algorithm. For computing clusters of roots of polynomials that can be evaluated fast, our implementation competes advantageously with user’s choice for root finding, MPsolve.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.