Abstract
In this study, a series of hydroxypropyl chitosan (HPCS)/soy protein isolate (SPI) composite films (HCSFs) with different SPI contents were developed via crosslinking, solution casting, and evaporation process. Effects of the SPI content on the structure and physical properties of the HCSFs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction patterns, scanning electron microscopy, swelling kinetics analysis, and mechanical testing. The HCSFs exhibited a lower swelling ratio with an increase in the SPI content. The tensile strength was in a tunable range from 7.88 ± 3.08 to 40.44 ± 2.31 MPa by adjusting the SPI content. Cytocompatibility and hemocompatibility of the HCSFs were evaluated by a series of in vitro assays, including MTT assay, live/dead assay, cell morphology observation, hemolysis ratio testing, and plasma recalcification time measurement. Results showed that the HCSFs support L929 cells attachment and proliferation without obvious hemolysis, indicating good cytocompatibility and hemocompatibility. The potential of resultant HCSFs as the wound dressings was investigated using a full-thickness skin wound model in rats. Results exhibited that the HCSFs with 50% SPI content had the fastest healing speed and the best skin regeneration efficiency and may be a potential candidate as the wound dressing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of biological macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.