Abstract

We report the development of a combined machine learning and high-throughput density functional theory (DFT) framework to accelerate the search for new ferroelectric materials. The framework can predict potential ferroelectric compounds using only elemental composition as input. A series of machine-learning algorithms initially predict the possible stable and insulating stoichiometries with polar crystal structures, necessary for ferroelectricity, within a given chemical composition space. A classification model then predicts the point groups of these stoichiometries. A subsequent series of high-throughput DFT calculations finds the lowest-energy crystal structure within the point group. As a final step, nonpolar parent structures are identified using group theory considerations, and the values of the spontaneous polarization are calculated using DFT. By predicting the crystal structures and the polarization values, this method provides a powerful tool to explore new ferroelectric materials beyond those in existing databases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.