Abstract

AbstractOrganic molecule‐mediated noncanonical DNA self‐assembly expands the standard DNA base‐pairing alphabets. However, only a very limited number of small molecules have been recognized as mediators because of the tedious and complicated experiments like crystallization and microscopy imaging. Here we present an integrative screening protocol incorporating molecular dynamics (MD) for fast theoretical simulation and native polyacrylamide gel electrophoresis for convenient experimental validation. Melamine, the molecule that was confirmed mediating noncanonical DNA base‐pairing, and 38 other candidate molecules were applied to demonstrate the feasibility of this protocol. We successfully identified seven stable noncanonical DNA duplex structures, and another eight novel structures with sub‐stability. In addition, we discovered that hairpins at both ends can significantly stabilize the noncanonical DNA structures, providing a guideline to design small organic molecule‐incorporated DNA structures. Such an efficient screening protocol will accelerate the design of alternative DNA‐molecule architectures beyond Watson–Crick pairs. Considering the wide range of potential mediators, it will also facilitate applications such as noncovalent, highly dense loading of drug molecules in DNA‐based delivery system and probe design for sensitive detection of certain molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.