Abstract

Nowadays, along with the demand for new technologies and new materials, a revolution in 3D printing technology is emerging. In recent years, stereolithography 3D printing has been widely used in both academia and industry, due to its fast forming speed, high precision, and low-cost advantages. The continuous liquid interface production technology has made the printing speed even faster. However, the process of resin refilling constrains the printing speed and the printing capabilities of such technologies, since only hollow structures can be fabricated. In this study, a nano-textured hydrophobic PDMS contacting layer and an oxygen-permeable membrane were bonded together as the functional release film. The oxygen inhibition layer was successfully maintained by the molecular oxygen permeated through the composite release film, achieving rapid stereolithography, and key factors that affecting resin refilling are selectively studied by the orthogonal experiment. Crucially, according to the simulation and experimental results, the adoption of the hydrophobic nano-texture not only increased the refilling speed of the resin by two times and reduced the printing time by nearly 25%, but also improved the printing reliability by reducing the vacuum (negative pressure) caused by the original slow refilling speed. Additionally, optical simulations also demonstrated that the nano-texture would not influence the curing effect of the resin. This work proposed a promising strategy for rapid stereolithography of 3D models containing larger cross-sectional areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.