Abstract

It is known that, under certain conditions, the quasi-static incremental analysis problem of elastoplastic structures with the von Mises yield criterion can be formulated as a second-order cone programming (SOCP) problem, which can be solved with a primal-dual interior-point method. Alternatively, this paper proposes to solve an equivalent unconstrained nonsmooth convex optimization problem, which has a form similar to a class of regularized least-square problems, known as group LASSO. We propose an accelerated proximal gradient method with an adaptive restart scheme for solving this unconstrained optimization problem. The algorithm is easy to implement, and free from numerical solution of linear equations unlike conventional methods in computational mechanics. Numerical experiments suggest that the presented algorithm outperforms a standard solver that implements a primal-dual interior-point method for conic optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call