Abstract

In many settings, molecular testing is needed but unavailable due to complexity and cost. Simple, rapid, and specific DNA detection technologies would provide important alternatives to existing detection methods. Here we report a novel, rapid nucleic acid detection method based on the accelerated photobleaching of the light-sensitive cyanine dye, 3,3'-diethylthiacarbocyanine iodide (DiSC(2)(3) I(-)), in the presence of a target genomic DNA and a complementary peptide nucleic acid (PNA) probe. On the basis of the UV-vis, circular dichroism, and fluorescence spectra of DiSC(2)(3) with PNA-DNA oligomer duplexes and on characterization of a product of photolysis of DiSC(2)(3) I(-), a possible reaction mechanism is proposed. We propose that (1) a novel complex forms between dye, PNA, and DNA, (2) this complex functions as a photosensitizer producing (1)O(2), and (3) the (1)O(2) produced promotes photobleaching of dye molecules in the mixture. Similar cyanine dyes (DiSC(3)(3), DiSC(4)(3), DiSC(5)(3), and DiSC(py)(3)) interact with preformed PNA-DNA oligomer duplexes but do not demonstrate an equivalent accelerated photobleaching effect in the presence of PNA and target genomic DNA. The feasibility of developing molecular diagnostic assays based on the accelerated photobleaching (the smartDNA assay) that results from the novel complex formed between DiSC(2)(3) and PNA-DNA is under way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.