Abstract
The purpose of this study was to investigate the effects of lactoferrin (LF)-conjugated nanodiamonds (NDs) in vitro on both anti-oxidant and anti-inflammation activity as well as osteogenic promotion. The application of LF-NDs resulted in sustained release of LF for up to 7 days. In vitro anti-oxidant analyses performed using Dichlorofluorescin diacetate (DCF-DA) assay and cell proliferation studies showed that LF (50 μg)-NDs effectively scavenged the reactive oxygen species (ROS) in MC3T3-E1 cells (osteoblast-like cells) after H2O2 treatment and increased proliferation of cells after H2O2 treatment. Treatment of lipopolysaccharide (LPS)-induced MC3T3-E1 cells with LF-NDs suppressed levels of pro-inflammatory cytokines, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). In addition, LF-NDs were associated with outstanding enhancement of osteogenic activity of MC3T3-E1 cells due to increased alkaline phosphatase (ALP) and calcium deposition. Our findings suggest that LF-NDs are an important substrate for alleviating ROS effects and inflammation, as well as promoting osteogenic differentiation of cells.
Highlights
Bone, plays major roles in the support, movement and protection of bodily organs and is a dynamic tissue with renewal and repair
Smaller hydrodynamic diameter and narrower polydispersity index (PDI) of LF-NDs were observed, which suggests that LF-NDs have improved dispersibility due to protein conjugating
Rasheed et al [46] demonstrated that LF inhibited prostaglandin E2 (PGE2) production and cyclocoxygenase-2 (COX-2) expression in IL-1β-induced human osteoarthritis via suppression of NF-κB activation. Consistent with these studies, we found that LF-NDs suppressed pro-inflammatory cytokines, such as IL-1β and tumor necrosis factor-α (TNF-α)
Summary
Plays major roles in the support, movement and protection of bodily organs and is a dynamic tissue with renewal and repair. Despite these properties, bone defects that result from trauma, traffic accidents (TA), congenital deformation, disease, and fracture sometimes require bone grafts. Autografts are considered the gold standard of bone graft replacements, due to their osteoinductive, osteoconductive and osteogenic properties. They have shortcomings such as restricted supply, donor-site morbidity and accompanying pain [1,2]. Other options for treating bone defects are allografts, which are characterized by osteoinductive and osteoconductive characteristics. Major drawbacks of allografts are associated with blood loss, disease transmission, and cost [3,4]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.