Abstract
We develop a generalization of Nesterov's accelerated gradient descent method which is designed to deal with orthogonality constraints. To demonstrate the effectiveness of our method, we perform numerical experiments which demonstrate that the number of iterations scales with the square root of the condition number, and also compare with existing state-of-the-art quasi-Newton methods on the Stiefel manifold. Our experiments show that our method outperforms existing state-of-the-art quasi-Newton methods on some large, ill-conditioned problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.