Abstract

The upper part of the Earth—the lithospheric layer, ∼100 km thick, is rigid. Segments of this spherical shell–lithospheric plates are drifting over a ductile asthenosphere. On the continents, the lithosphere includes the Earth′s crust, ∼40 km thick, which is underlain by peridotitic rocks of the mantle. In most areas, at depths ∼20–40 km the continental crust is composed of basalts with density ∼2900kg m−3. At temperature and pressure typical for this depth, basalts are metastable and should transform into another assemblage of minerals which corresponds to garnet granulites and eclogites with higher densities 3300–3600 kg m−3. The rate of this transformation is extremely low in dry rocks, and the associated contraction of basalts evolves during the time ≥108 a. To restore the Archimede′s equilibrium, the crust subsides with a formation of sedimentary basins, up to 10–15 km deep.Volumes of hot mantle with a water‐containing fluid emerge sometimes from a deep mantle to the base of the lithosphere. Fluids infiltrate into the crust through the mantle part of the lithosphere. They catalyze the reaction in the lower crust which results in rock contraction with a formation of deep water basins at the surface during ∼106 a. The major hydrocarbon basins of the world were formed in this way. Infiltration of fluids strongly reduces the viscosity of the lithosphere, which is evidenced by narrow‐wavelength deformations of this layer. At times of softening of the mantle part of the lithosphere, it becomes convectively replaced by a hotter and lighter asthenosphere. This process has resulted in the formation of many mountain ranges and high plateaus during the last several millions of years. Softening of the whole lithospheric layer which is rigid under normal conditions allows its strong compressive and tensile deformations. At the epochs of compression, a large portion of dense eclogites that were formed from basalts in the lower crust sink deeply into the mantle. In some cases they carry down lighter blocks of granites and sedimentary rocks of the upper crust which delaminate from eclogitic blocks and emerge back to the crust. Such blocks of upper crustal rocks include diamonds and other minerals which were formed at a depth of 100–150 km.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.