Abstract
Poly-ether-ether-ketone (PEEK) has become the spinal implant material of choice due to its radiolucency, low elastic modulus, manufacturability, and mechanical durability. However, studies have highlighted less that optimal cytocompatibility properties of conventional PEEK leading to decreased bone growth and/or extensive bacteria infection. In order to improve the surface properties of PEEK for orthopedic applications, here, Accelerated Neutral Atom Beam (ANAB) technology was used to modify PEEK and such samples were tested In Vitro for osteoblast (bone-forming cell) functions and bacterial colonization. Results showed significantly improved osteoblast responses (such as deposition of calcium containing mineral as well as alkaline phosphatase, osteocalcin, osteopontin, and osteonectin synthesis) on ANAB modified PEEK compared to controls due to optimized surface energy from nanostructured features and greater exposure of PEEK chemistry. ANAB treatment enhanced protein absorption (specifically, mucin, casein, and lubricin) to the PEEK surface and consequently significantly reduced bacterial (including methicillin resistant Staph. aureus (or MRSA), E. coli, and Staph. epidermidis) colonization. Collectively, this study introduces ANAB treated PEEK as a novel material that should be further studied for a wide range of improved orthopedic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.