Abstract

BackgroundOuter membrane proteins (OMPs) of Gram-negative bacteria are key players in the biology of bacterial-host interactions. However, while considerable attention has been given to OMPs of vertebrate pathogens, relatively little is known about the role of these proteins in bacteria that primarily infect invertebrates. One such OMP is found in the intracellular bacteria Wolbachia, which are widespread symbionts of arthropods and filarial nematodes. Recent experimental studies have shown that the Wolbachia surface protein (WSP) can trigger host immune responses and control cell death programming in humans, suggesting a key role of WSP for establishment and persistence of the symbiosis in arthropods.ResultsHere we performed an analysis of 515 unique alleles found in 831 Wolbachia isolates, to investigate WSP structure, microevolution and population genetics. WSP shows an eight-strand transmembrane β-barrel structure with four extracellular loops containing hypervariable regions (HVRs). A clustering approach based upon patterns of HVR haplotype diversity was used to group similar WSP sequences and to estimate the relative contribution of mutation and recombination during early stages of protein divergence. Results indicate that although point mutations generate most of the new protein haplotypes, recombination is a predominant force triggering diversity since the very first steps of protein evolution, causing at least 50% of the total amino acid variation observed in recently diverged proteins. Analysis of synonymous variants indicates that individual WSP protein types are subject to a very rapid turnover and that HVRs can accommodate a virtually unlimited repertoire of peptides. Overall distribution of WSP across hosts supports a non-random association of WSP with the host genus, although extensive horizontal transfer has occurred also in recent times.ConclusionsIn OMPs of vertebrate pathogens, large recombination impact, positive selection, reduced structural and compositional constraints, and extensive lateral gene transfer are considered hallmarks of evolution in response to the adaptive immune system. However, Wolbachia do not infect vertebrates. Here we predict that the rapid turnover of WSP loop motifs could aid in evading or inhibiting the invertebrate innate immune response. Overall, these features identify WSP as a strong candidate for future studies of host-Wolbachia interactions that affect establishment and persistence of this widespread endosymbiosis.

Highlights

  • Outer membrane proteins (OMPs) of Gram-negative bacteria are key players in the biology of bacterial-host interactions

  • Residues in the b-barrel show the highest conservation, while variability mainly affects the conformational domains located in the extracellular loops, which can function as receptors and can be highly antigenic - e.g. P28 OMPs of Ehrlichia, Opa proteins of Neisseria and MSP2 proteins of Anaplasma [11,12,13,14]

  • Prediction was confirmed by querying the complete Wolbachia surface protein (WSP) sequence from wMel to the HHomp database, available at http://toolkit. tuebingen.mpg.de/, which detects sequence homology to known outer membrane proteins (OMPs) based on sequence-profiles identified with Hidden Markov Models (HMMs)

Read more

Summary

Introduction

Outer membrane proteins (OMPs) of Gram-negative bacteria are key players in the biology of bacterial-host interactions. While considerable attention has been given to OMPs of vertebrate pathogens, relatively little is known about the role of these proteins in bacteria that primarily infect invertebrates. Outer membrane proteins (OMPs) of pathogenic bacteria are widely recognized as crucially involved in bacterial interactions with eukaryotic hosts [1]. They have been the subject of extensive studies aimed to clarify how they evolve and whether their patterns of divergence are informative about the biology of host-. Residues in the b-barrel show the highest conservation, while variability mainly affects the conformational domains located in the extracellular loops, which can function as receptors and can be highly antigenic - e.g. P28 OMPs of Ehrlichia, Opa proteins of Neisseria and MSP2 proteins of Anaplasma [11,12,13,14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call