Abstract

Person re-identification is an open and challenging problem in computer vision. A surge of effort has been spent design the best feature representation, and to learn either the transformation of such features across cameras or an optimal matching metric. Metric learning solutions which are currently in vogue in the field generally require a dimensionality reduction pre-processing stage to handle the high-dimensionality of the adopted feature representation. Such an approach is suboptimal and a better solution can be achieved by combining such a step in the metric learning process. Towards this objective, a low-rank matrix which projects the high-dimensional vectors to a low-dimensional manifold with a discriminative Euclidean distance is introduced. The goal is achieved with a stochastic accelerated proximal gradient method. Experiments on two public benchmark datasets show that better performances than state-of-the-art methods are achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.