Abstract

Segmentation and volume measurement of liver tumor are important tasks for surgical planning and cancer follow-up. In this work, a segmentation method from four-phase computed tomography images is proposed. It is based on the combination of the Expectation-Maximization algorithm and the Hidden Markov Random Fields. The latter considers the spatial information given by voxel neighbors of two contrast phases. The segmentation algorithm is applied on a volume of interest that decreases the number of processed voxels. To accelerate the classification steps within the segmentation process, a Bootstrap resampling scheme is also adopted. It consists in selecting randomly an optimal representative set of voxels. The experimental results carried out on three clinical datasets show the performance of our liver tumor segmentation method. It has been notably observed that the computing time of the classification algorithm is reduced without any significant impact on the segmentation accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call