Abstract
Non-negative matrix factorization (NMF) is widely used in feature extraction and dimension reduction fields. Essentially, it is an optimization problem to determine two non-negative low rank matrices \(W_{m \times k}\) and \(H_{k \times n}\) for a given matrix \(A_{m \times n}\), satisfying \(A_{m \times n} \approx W_{m \times k}H_{k \times n}\). In this paper, a novel approach to improve the image decomposing and reconstruction effects by introducing the Singular Value Decomposing (SVD)-based initialization scheme of factor matrices W and H, and another measure called choosing rule to determine the optimum value of factor rank k, are proposed. The input image is first decomposed using SVD to get its singular values and corresponding eigenvectors. Then, the number of main components as the rank value k is extracted. Then, the singular values and corresponding eigenvectors are used to initialize W and H based on selected rank k. Finally, convergent results are obtained using multiplicative and additive update rules. However, iterative NMF algorithms’ convergence is very slow on most platforms limiting its practicality. To this end, a parallel implementation frame of described improved NMF algorithm using CUDA, a tool for algorithms parallelization on massively parallel processors, i.e., many-core graphics processors, is presented. Experimental results show that our approach can get better decomposing effect than traditional NMF implementations and dramatic accelerate rate comparing to serial schemes as well as existing distributed-system implementations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.