Abstract

A continuing challenge in the most common biodegradable polyester of poly(l-lactide) (PLLA) is to improve the degradation rate in the environment, though it has been widely used in packaging and medical applications. In this study, PLLA/poly(ether-block-amide) (PEBA) blends are prepared by melt blending to investigate the effect of PEBA component on the phase morphology, thermal behavior, mechanical properties, and hydrolytic degradation of the blends. The incorporation of PEBA component is beneficial to the improved toughness and increased water absorption of the blends, and accelerated hydrolytic degradation of PLLA. The blend exhibits the optimal mechanical and hydrolytic degradation properties when the blend mass ratio of PLLA/PEBA is 80/20. The toughness of the blend is increased by 390 % compared to that of pure PLLA. After being hydrolyzed at 58 °C for 240 h, the water absorption, the mass loss and the decrease of molecular weight of the blend is increased by 138 %, 160 % and 40 %, respectively, indicating faster hydrolytic degradation rate of the blend than that of pure PLLA. Furthermore, the accelerated hydrolytic degradation mechanism of PLLA in the blend is revealed. The amorphous region of PLLA is hydrolyzed initially at the phase interface of the blend, and subsequently the crystalline structure of PLLA is degraded. The hydrolysis process causes a change in the relative content of crystalline regions in the system, resulting in an increase in crystallinity of PLLA first and then decrease. These findings provide a new strategy for the design of novel degradable PLLA materials for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.