Abstract

Development of efficient electrocatalysts usually relies on half-cell electrochemical tests for rapid material screening, which however are not always consistent with the associated full cell evaluation. This study designs a tensile-strained Pd anode and reveals that with a lower apparent activity toward the hydrogen oxidation reaction as compared to the unstrained one, it exhibits a surprisingly high activity in proton exchange membrane fuel cells (PEMFCs). With an ultralow Pd loading of 4.5µg cm-2 , the tensile-strained Pd achieves a maximum power density of 1048mW cm-2 , indicating a 30-fold improvement in power efficiency than that of commercial Pd/C, nearly four times of that of the unstrained one. This discrepancy can be ascribed to the hydrogen-rich surface in the H2 atmosphere of PEMFCs owing to the accelerated hydrogen "spill-over" in the tensile-strained Pd with a standout hydrogen storage property.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.