Abstract
Electronic phase modulation based on hydrogen insertion/extraction is kinetically limited by the bulk hydrogen diffusion or surface exchange reaction, so slow hydrogen kinetics has been a fundamental challenge to be solved for realizing faster solid-state electrochemical switching devices. Here we accelerate electronic phase modulation that occurs by hydrogen insertion in VO2 through vertically aligned 2D defects induced by symmetry mismatch between epitaxial films and substrates. By using domain-matching epitaxial growth of monoclinic VO2 films with lattice rotation and twinning on hexagonal Al2O3 substrates, the domain boundaries naturally align vertically; they provide a "highway" for hydrogen diffusion and surface exchange in VO2 films and overcome the limited rates of bulk diffusion and surface reaction. From the quantitative analysis of the deuterium (2H) isotope tracer exchange, it is confirmed that the tracer diffusion coefficient (D*) and surface exchange coefficient (k*) were increased by several orders of magnitude in VO2 films that had domain boundaries. These results yield fundamental insights into the mechanism by which mobile ions are inserted along extended defects and provide a strategy to overcome a limitation to switching speed in electrochemical devices that exploit ion insertion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.