Abstract

Low-birth-weight neonates are routinely fed a high-protein formula to promote catch-up growth and antibiotics are usually associated to prevent infection. Yet the effects of such practices on tissue protein metabolism are unknown. Baby pigs were fed from age 2 to 7 or 28 d with high protein formula with or without amoxicillin supplementation, in parallel with normal protein formula, to determine tissue protein metabolism modifications. Feeding high protein formula increased growth rate between 2 and 28 days of age when antibiotic was administered early in the first week of life. This could be explained by the occurrence of diarrhea when piglets were fed the high protein formula alone. Higher growth rate was associated with higher feed conversion and reduced protein synthesis rate in the small intestine, muscle and carcass, whereas proteolytic enzyme activities measured in these tissues were unchanged. In conclusion, accelerated growth rate caused by high protein formula and antibiotics was not supported by increased protein synthesis in muscle and carcass.

Highlights

  • IntroductionWhile breast feeding is encouraged, high protein formulas are still used in at-risk populations such as low-birth-weight (LBW) babies who have suffered intra-uterine growth restriction (IUGR) to ensure a rapid postnatal catch-up growth and brain development [1]

  • Formulation of artificial milk for the neonate has improved in the last decade

  • This study shows that feeding neonatal LBW piglets with HP formulas increased growth rate between 2 and 28 days of age compared with those fed normal protein (NP) formula when an antibiotic has been administered early during the first week of life

Read more

Summary

Introduction

While breast feeding is encouraged, high protein formulas are still used in at-risk populations such as low-birth-weight (LBW) babies who have suffered intra-uterine growth restriction (IUGR) to ensure a rapid postnatal catch-up growth and brain development [1]. This nutritional practice is based on the anabolic effect of highprotein formulas described in young animals born with normal birth weight, attributed to the stimulatory effect of amino acids on muscle and liver protein synthesis [2]. This antibiotic may interfere with the effects of high-protein supply on the development of microbiota [4] and may decrease the risk of digestive disorders

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call