Abstract

The geroncogenesis hypothesis postulates that the decline in metabolic cellular health that occurs naturally with aging drives a “field effect” predisposing normal tissues for cancer development. We propose that mutations in the cancer susceptibility genes BRCA1/2 might trigger “accelerated geroncogenesis” in breast and ovarian epithelia. By speeding up the rate at which the metabolic threshold becomes “permissive” with survival and expansion of genomically unstable pre-tumoral epithelial cells, BRCA haploinsufficiency-driven metabolic reprogramming would operate as a bona fide oncogenic event enabling malignant transformation and tumor formation in BRCA carriers. The metabolic facet of BRCA1 one-hit might involve tissue-specific alterations in acetyl-CoA, α-ketoglutarate, NAD+, FAD, or S-adenosylmethionine, critical factors for de/methylation or de/acetylation dynamics in the nuclear epigenome. This in turn might induce faulty epigenetic reprogramming at the “install phase” that directs cell-specific differentiation of breast/ovarian epithelial cells, which can ultimately determine the penetrance of BRCA defects during developmental windows of susceptibility. This model offers a framework to study whether metabolic drugs that prevent or revert metabolic reprogramming induced by BRCA haploinsufficiency might displace the “geroncogenic risk” of BRCA carriers to the age typical for those without the mutation. The identification of the key nodes that directly communicate changes in cellular metabolism to the chromatin in BRCA haploinsufficient cells may allow the epigenetic targeting of genomic instability using exclusively metabolic means. The validation of accelerated geroncogenesis as an inherited “one-hit” metabolic “field effect” might offer new strategies to therapeutically revisit the apparently irreversible genetic-hereditary fate of women with hereditary breast-ovarian cancer syndrome.

Highlights

  • Hereditary cancer and the “Angelina Jolie effect”: how high celebrity profile can have a major impact on worldwide biomedicine

  • The famous American film actress and director Angelina Jolie made public in 2013 [1] and 2015 [2] that, due to her high risk of developing cancer, she had undergone two surgical interventions: a double mastectomy, and later a bilateral salpingo-oophorectomy. Three women in her family had died from the disease, including her mother, and DNA tests had revealed that Ms Jolie carried a mutation in BRCA1, one of the cancer susceptibility genes linked to the so-called hereditary breast-ovarian cancer syndrome (HBOCS)

  • This “Jolie effect” has not translated, and will not in the short or mid-term, into significant changes in the few therapeutic options available to these women [6,7,8,9,10,11], namely: 1) undergo a very strict medical surveillance; 2) take chemopreventive therapy based on the selective estrogen-receptor modulator (SERM) tamoxifen -effective in a small percentage of cases, and with potential acute and long-term side effects- to reduce the risk of developing the disease; and 3) choose to have preventive surgery with removal of healthy breasts and ovaries, like Angelina Jolie, which could have a profound impact on the quality of life of the affected women

Read more

Summary

Introduction

Hereditary cancer and the “Angelina Jolie effect”: how high celebrity profile can have a major impact on worldwide biomedicine.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call