Abstract

Formation of a sodium depletion layer on a soda lime glass surface was accelerated efficiently using a corona discharge treatment in H2 atmosphere. One origin of such acceleration was the preferential generation of H+ with a larger mobility at an anode needle end with a lower applied voltage than that in air. The second origin was the applied voltage across the glass plate during the corona discharge treatment, which was estimated theoretically as 2.7 times higher than that in air. These two effects doubled the depletion layer thickness compared with that in air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.