Abstract

The effect of displacement damage on the corrosion behavior in a molten FLiBe salt environment was investigated. The element distribution and microstructure around the grain boundaries (GBs) after corrosion were characterized. The results show a decrease in corrosion thickness with increasing irradiation dose and the presence of intergranular corrosion. Nanoscales M2C carbides were observed to be distributed, with a denser and thicker distribution in samples with higher irradiation doses. Their distribution depth is related to the Cr depletion region, inhibiting Cr diffusion toward the GBs and surface. Furthermore, the nucleation mechanism of M2C carbides along the GBs and in irradiated regions was revealed, attributed to the combined effects of thermal influences, element preferential dissolution due to corrosion, and irradiation-induced segregation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.