Abstract

Accelerated flow past a NACA 0015 aerofoil is investigated experimentally and computationally for Reynolds number Re = 7968 at an angle of attack α = 30°. Experiments are conducted in a specially designed piston-driven water tunnel capable of producing free-stream velocity with different ramp-type accelerations, and the DPIV technique is used to measure the resulting flow field past the aerofoil. Computations are also performed for other published data on flow past an NACA 0015 aerofoil in the range 5200 ≤ Re ≤ 35000, at different angles of attack. One of the motivations is to see if the salient features of the flow captured experimentally can be reproduced numerically. These computations to solve the incompressible Navier–Stokes equation are performed using high-accuracy compact schemes. Load and moment coefficient variations with time are obtained by solving the Poisson equation for the total pressure in the flow field. Results have also been analysed using the proper orthogonal decomposition technique to understand better the evolving vorticity field and its dependence on Reynolds number and angle of attack. An energy-based stability analysis is performed to understand unsteady flow separation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.