Abstract

Computational imaging systems with embedded processing have potential advantages in power consumption, computing speed, and cost. However, common processors in embedded vision systems have limited computing capacity and low level of parallelism. The widely used iterative algorithms for image reconstruction rely on floating-point processors to ensure calculation precision, which require more computing resources than fixed-point processors. Here we present a regularized Landweber fixed-point iterative solver for image reconstruction, implemented on a field programmable gated array (FPGA). Compared with floating-point embedded uniprocessors, iterative solvers implemented on the fixed-point FPGA gain 1 to 2 orders of magnitude acceleration, while achieving the same reconstruction accuracy in comparable number of effective iterations. Specifically, we have demonstrated the proposed fixed-point iterative solver in fiber borescope image reconstruction, successfully correcting the artifacts introduced by the lenses and fiber bundle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.