Abstract

Five small serum proteins (SSPs) with molecular masses of 6.5–10 kDa were detected in Habu ( Trimeresurus flavoviridis) serum; this included two novel proteins SSP-4 and SSP-5. The amino acid sequences of these proteins and of SSP-1, SSP-2, and SSP-3, which were reported previously, were determined on the basis of the nucleotide sequences of their cDNAs. Although these proteins exhibited only limited sequence identity to mammalian prostatic secretory protein of 94 amino acids (PSP94), the topological pattern of disulfide bonds in SSPs was identical to that of the mammalian proteins. SSP-3 and SSP-4 lacked approximately 30 residues at the C-terminal. Each of the full-length cDNAs encoded a mature protein of 62–90 residues and a highly conserved signal peptide. The evolutionary distances between SSPs estimated on the basis of the amino acid changes were significantly greater than those of the synonymous nucleotide substitutions; these finding, together with results from analyses of nonsynonymous to synonymous rates of change (dN/dS) suggest that snake SSPs have endured substantial accelerated adaptive protein evolution. Such accelerated positive selection in SSPs parallels other findings of similar molecular evolution in snake venom proteins and suggests that diversifying selection on both systems may be linked, and that snake SSP genes may have evolved by gene duplication and rapid diversification to facilitate the acquisition of various functions to block venom activity within venomous snakes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call