Abstract
The process to certify highly automated vehicles has not yet been defined by any country in the world. Currently, companies test automated vehicles on public roads, which is time-consuming and inefficient. We proposed the accelerated evaluation concept, which uses a modified statistics of the surrounding vehicles and the importance sampling theory to reduce the evaluation time by several orders of magnitude, while ensuring the evaluation results are statistically accurate. In this paper, we further improve the accelerated evaluation concept by using piecewise mixture distribution models, instead of single parametric distribution models. We developed and applied this idea to forward collision control system reacting to vehicles making cutin lane changes. The behavior of the cutin vehicles was modeled based on more than 403,581 lane changes collected by the University of Michigan Safety Pilot Model Deployment Program. Simulation results confirm that the accuracy and efficiency of the piecewise mixture distribution method outperformed single parametric distribution methods in accuracy and efficiency, and accelerated the evaluation process by almost four orders of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.