Abstract

We report the destabilization of stationary Turing patterns and the subsequent emergence of fast spatiotemporal dynamics due to reactant consumption. The localized hexagonal Turing spots switch from a stationary regime to a dynamics state by exhibiting spatial oscillations with two characteristic wavelengths and one representative temporal period. These oscillatory Turing spots are not temporally stable and evolve into traveling spiral tips that, in addition to the unexpected birth of spots, rapidly transform into target patterns and originate multiple collisions and wave breakups due to their proximity, degenerating into a chaotic scenario.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call