Abstract

We present a fast distributed solution to the convex network flow optimization problem. Our approach uses a family of dual descent algorithms that approximate the Newton direction to achieve faster convergence rates than existing distributed methods. The approximate Newton directions are obtained through matrix splitting techniques and sparse Taylor approximations of the inverse Hessian. We couple this descent direction with a distributed line search algorithm which requires the same information as our descent direction to compute. We show that, similarly to conventional Newton methods, the proposed algorithm exhibits super-linear convergence within a neighborhood of the optimal value. Numerical experiments corroborate that convergence times are between one to two orders of magnitude faster than existing distributed optimization methods. A connection with recent developments that use consensus to compute approximate Newton directions is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.