Abstract
In this article, we study decentralized convex constrained optimization problems in networks. We focus on the dual averaging-based algorithmic framework that is well-documented to be superior in handling constraints and complex communication environments simultaneously. Two new decentralized dual averaging (DDA) algorithms are proposed. In the first one, a second-order dynamic average consensus protocol is tailored for DDA-type algorithms, which equips each agent with a provably more accurate estimate of the global dual variable than conventional schemes. We rigorously prove that the proposed algorithm attains <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\mathcal {O}(1/t)$</tex-math></inline-formula> convergence for general convex and smooth problems, for which existing DDA methods were only known to converge at <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\mathcal {O}(1/\sqrt{t})$</tex-math></inline-formula> prior to our work. In the second one, we use the extrapolation technique to accelerate the convergence of DDA. Compared to existing accelerated algorithms, where typically two different variables are exchanged among agents at each time, the proposed algorithm only seeks consensus on local gradients. Then, the extrapolation is performed based on two sequences of primal variables, which are determined by the accumulations of gradients at two consecutive time instants, respectively. The algorithm is proved to converge at <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\mathcal {O}(1)\left(\frac{1}{t^{2}}+\frac{1}{t(1-\beta)^{2}}\right)$</tex-math></inline-formula> , where <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\beta$</tex-math></inline-formula> denotes the second largest singular value of the mixing matrix. We remark that the condition for the algorithmic parameter to guarantee convergence does not rely on the spectrum of the mixing matrix, making itself easy to satisfy in practice. Finally, numerical results are presented to demonstrate the efficiency of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.