Abstract
Nanocrystalline (nc) metals are generally strong yet thermally unstable, rendering them difficult to process and unsuitable for use, particularly at elevated temperatures. Nc multicomponent and high-entropy alloys (HEAs) are found to offer enhanced thermal stability but only in a few empirically discovered systems out of a vast compositional space. In response, this work develops a combinatorial strategy to accelerate the discovery of nc-(TiZrHf)x(NbTa)1- x alloy library with distinct thermal stability, in terms of phases and grain sizes. Based on synchrotron X-ray diffraction and electron microscopy characterizations, a phase transition is observed from amorphous-crystalline nanocomposites to a body-centered cubic (bcc) phase upon annealing. With increased NbTa content (decreased x value), the system tends to achieve thermally stable dual bcc phases upon annealing; in contrast, alloys with increased TiZrHf content (x > 0.6) maintain a single-composition nanocomposite state, impeding crystallization and grain growth. This investigation not only broadens the understanding of thermal stability but also delves into the onset of crystallization in HEA systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.