Abstract

Cu-Ni-Co-Si alloys have been regarded as a candidate for the next-generation integrated circuits. Nevertheless, using the trial and error method to design high-performance copper alloys requires a lot of effort and time. Thus, the material design method based on machine learning is used to accelerate the exploitation of alloys. In this study, a composition-process-property database of Cu-Ni-Co-Si alloys was established, and a new strategy that could simultaneously realize the prediction of properties and the optimization of compositions and process parameters was proposed. Four groups were chosen from 38,880 candidates by the multi-performance screening method; goodagreements existed between the prediction and the test. The Cu-2.3Ni-0.7Co-0.7Si alloy had the best performance among the designed alloys, and this alloy was studied in depth. The influence of the dissolution of Co in Ni2Si was analyzed from a novel perspective. Interestingly, the trace amount of Co replacing Ni to form (Ni, Co)2Si increased the phase dissolution temperature dramatically and shortened the coarsening rate. Affected by Co, the over-aging process was slowed down, which broadened the use range of alloys greatly. Therefore, the developed Cu-2.3Ni-0.7Co-0.7Si alloy can prove to be promising materials that meet different working conditions, and its performance was better than C70350 alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.