Abstract
In this paper, we propose two methods for solving unconstrained multiobjective optimization problems. First, we present a diagonal steepest descent method, in which, at each iteration, a common diagonal matrix is used to approximate the Hessian of every objective function. This method works directly with the objective functions, without using any kind of a priori chosen parameters. It is proved that accumulation points of the sequence generated by the method are Pareto-critical points under standard assumptions. Based on this approach and on the Nesterov step strategy, an improved version of the method is proposed and its convergence rate is analyzed. Finally, computational experiments are presented in order to analyze the performance of the proposed methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.