Abstract

Most gravitational-wave signals from binary neutron star coalescences are too weak to be individually resolved with current detectors. We demonstrate how to extract a population of sub-threshold binary neutron star signals using Bayesian parameter estimation. Assuming a merger rate of one signal every two hours, we find that this gravitational-wave background can be detected after approximately three months of observation with Advanced LIGO and Virgo at design sensitivity, versus several years using the standard cross-correlation algorithm. We show that the algorithm can distinguish different neutron star equations of state using roughly seven months of Advanced LIGO and Virgo design-sensitivity data. This is in contrast to the standard cross-correlation method, which cannot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call