Abstract
Lepidopteran insects are highly refractory to oral RNA interference (RNAi). Degradation, impaired cellular uptake and intracellular transport of double-stranded RNA (dsRNA) are considered the major factors responsible for the reduced RNAi efficiency in these insects. In this study, the potential of lectins to improve dsRNA delivery and RNAi efficacy was evaluated. First, a fusion protein consisting of the Galanthus nivalis agglutinin (GNA) and a dsRNA binding domain was developed, further referred to as GNA:dsRBD (GNAF). Then, its ability to increase dsRNA uptake and transfection efficiency in lepidopteran midgut cells was evaluated, as well as its ability to protect and promote the RNAi response in the beet armyworm Spodoptera exigua. Confocal microscopy analysis showed that GNAF-complexed dsRNA was internalized faster in Choristoneura fumiferana midgut CF1 cells (1 min) compared to naked dsRNA (>1 h). The faster uptake was also correlated with an increased RNAi efficiency in these CF1 cells. In vivo feeding bioassays with GNAF-complexed dsRNA led to an increased mortality in S. exigua compared to the controls. By targeting the essential gene V-ATPase A, we observed that the mortality increased to 48% in the GNAF-dsRNA treatment compared to only 8.3% and 6.6% in the control treatments with the naked dsRNA and the GNAF, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.