Abstract

In the brain, retinoic acid (RA) concentrations are under tight spatio-temporal control. Here, we show that challenge of primary mouse microglia with lipopolysaccharide (LPS) results in increased release of nitric oxide (NO) and tumor necrosis factor-α (TNF-α). Co-administration of RA attenuated microglial activation. Similarly, pretreatment with RA-metabolism inhibitor liarozole potently reduced NO and TNF-α release. Conversely, activated microglia showed increased protein expression of RA-degrading cytochromes CYP26A1, CYP26B1, CYP3A4 and CYP2C. Correspondingly, RA catabolism by activated microglia was significantly increased. Our results indicate that RA reduces microglial activation, but also, conversely, that the activation state of microglia influences RA metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call