Abstract

In this study, we determined the mechanisms and kinetics of the degradations of ibuprofen (IBP) and sulfamethoxazole (SMX), and identified the active species contributions in ferrous ion (Fe(II))/free chlorine (FC) system. Reactive chlorine species (RCS) were the major contributor to the degradations of IBP (73.0%) and SMX (59.3%), respectively, at pH 3. Due to the low reaction rates between Fe(IV) and target pollutants (kFe(IV), IBP = (1.5 ± 0.03) × 103 M−1 s−1 and kFe(IV), SMX = (4.8 ± 0.2) × 103 M−1 s−1) and the low [Fe(IV)]ss ((5.0 ± 0.6) × 10−8 M), Fe(IV) was not the main contributor and only contributed 0.17% and 0.86% to the degradation of IBP and SMX, respectively, at pH 3. The degradations of pharmaceuticals were facilitated by acidic conditions. Chloride (Cl−) accelerated the degradation of SMX and had a weak effect on the degradation of IBP. Natural organic matter limited the degradation of IBP and SMX. Overall, we demonstrated that multiple active oxidants (Fe(IV) and RCS) are produced by Fe(II)/FC and elucidated the mechanism of active oxidants degradation of pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.